Effects of the allosteric antagonist 1-(4-chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl)phenyl]urea (PSNCBAM-1) on CB1 receptor modulation in the cerebellum.

نویسندگان

  • Xiaowei Wang
  • James G Horswill
  • Benjamin J Whalley
  • Gary J Stephens
چکیده

1-(4-Chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl)phenyl] urea (PSNCBAM-1) has recently been described as a cannabinoid CB1 receptor allosteric antagonist associated with hypophagic effects in vivo; however, PSNCBAM-1 effects on CB(1) ligand-mediated modulation of neuronal excitability remain unknown. Here, we investigate PSNCBAM-1 actions on CB(1) receptor-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding in cerebellar membranes and on CB(1) ligand modulation of presynaptic CB(1) receptors at inhibitory interneuron-Purkinje cell synapses in the cerebellum using whole-cell electrophysiology. PSNCBAM-1 caused noncompetitive antagonism in [(35)S]GTPγS binding studies, with higher potency against the CB receptor agonist (-)-cis-3-[2-hydroxy-4-(1,1-dimethyl heptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940) than for R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]-pyrrolo[1,2,3,-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate] [WIN55,212-2 (WIN55)]. In electrophysiological studies, WIN55 and CP55940 reduced miniature inhibitory postsynaptic currents (mIPSCs) frequency but not amplitude. PSNCBAM-1 application alone had no effect on mIPSCs; however, PSNCBAM-1 pretreatment revealed agonist-dependent functional antagonism, abolishing CP55940-induced reductions in mIPSC frequency but having no clear effect on WIN55 actions. The CB(1) antagonist/inverse agonist N-(piperidin-1-yl)-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-1H-multipyrazole-3-carboxamide (AM251) increased mIPSC frequency beyond control; this effect was reversed by PSNCBAM-1. PSNCBAM-1 pretreatment also attenuated AM251 effects. Thus, PSNCBAM-1 reduced CB(1) receptor ligand functional efficacy in the cerebellum. The differential effect of PSNCBAM-1 on CP55940 versus WIN55 actions in [(35)S]GTPγS binding and electrophysiological studies and the attenuation of AM251 effects are consistent with the ligand-dependence associated with allosteric modulation. These data provide the first description of functional PSNCBAM-1 allosteric antagonist effects on neuronal excitability in the mammalian central nervous system (CNS). PSNCBAM-1 allosteric antagonism may provide viable therapeutic alternatives to orthosteric CB(1) antagonists/inverse agonists in the treatment of CNS disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diarylureas as Allosteric Modulators of the Cannabinoid CB1 Receptor: Structure–Activity Relationship Studies on 1-(4-Chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1)

The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl...

متن کامل

Allosteric modulation of the cannabinoid CB1 receptor.

We investigated the pharmacology of three novel compounds, Org 27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide), Org 27759 (3-ethyl-5-fluoro-1H-indole-2-carboxylic acid [2-94-dimethylamino-phenyl)-ethyl]-amide), and Org 29647 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid (1-benzyl-pyrrolidin-3-yl)-amide, 2-enedioic acid salt), at the cannabinoid CB1...

متن کامل

Biased Agonism and Biased Allosteric Modulation at the CB1 Cannabinoid Receptor.

CB1 cannabinoid receptors (CB1Rs) are attractive therapeutic targets for numerous central nervous system disorders. However, clinical application of cannabinoid ligands has been hampered owing to their adverse on-target effects. Ligand-biased signaling from, and allosteric modulation of, CB1Rs offer pharmacological approaches that may enable the development of improved CB1R drugs, through modul...

متن کامل

Optimization of Chemical Functionalities of Indole-2-carboxamides To Improve Allosteric Parameters for the Cannabinoid Receptor 1 (CB1)

5-Chloro-3-ethyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (1; ORG27569) is a prototypical allosteric modulator for the cannabinoid type 1 receptor (CB1). Here, we reveal key structural requirements of indole-2-carboxamides for allosteric modulation of CB1: a critical chain length at the C3-position, an electron withdrawing group at the C5-position, the length of the linker betwee...

متن کامل

N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) interaction with LYS 3.28(192) is crucial for its inverse agonism at the cannabinoid CB1 receptor.

In superior cervical ganglion neurons, N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) competitively antagonizes the Ca(2+) current effect of the cannabinoid (CB) agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN55212-2), and behaves as an inverse agonist b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 2011